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Abstract. We present an exact calculation to show that an infinite Sierpinski gasket fractal
supports an infinite number ofextendedelectron states. We work within the real space
renormalization group (RSRG) scheme and show that by analysing the recursion relations for
the Hamiltonian parameters one can extract the eigenvalues for an infinity of eigenstates that are
of extended character. We also calculate the transmission coefficient for fractals of arbitrarily
large generation. For the energy eigenvalues corresponding to the extended electron states,
the transmission coefficient exhibits a novel feature. It turns out to be scale invariant with a
value between zero and one depending upon the initial choice of the on-site potentials and the
nearest-neighbour hopping integrals.

Fractals have been studied by condensed matter theorists for many years. One of the
main points of interest has been the fact that these self-similar objects are found to serve
as a non-trivial model for the backbone of a percolating cluster [1, 2]. Works with the
popular Sierpinski gasket (SG) fractal have confirmed this idea [3]. Fractals, in particular
the deterministic fractals (the SG is one such example), possess scale invariance (dilation
symmetry) and do not have any translational order.

Statistical physics on fractal lattices constitutes a large volume in the literature (see
[1–3] and references therein). However, the study of their electronic properties is not that
exhaustive. As fractals exhibit the absence of translational invariance and presence of
self-similarly at the same time, they may be thought to bridge the gap between periodic
(ordered) and randomly disordered systems. These systems belong to a class different from
that of the quasiperiodic lattices that have drawn considerable attention in recent years [4–6].
Therefore, a detailed study of the electronic properties of fractals may lead to new results
and insight into the physics of non-periodic systems.

An early study of electronic properties of fractal lattices is due to Domanyet al [7]
who solved the Schrodinger equation on a variety of fractal lattices to examine the energy
spectrum using a recursive technique. However, this work does not discuss the precise nature
of the electronic wave functions. The energy levels have been reported to be discrete,
very closely spaced, and highly degenerate [7]. Rammal and Toulouse [8] studied the
energy spectrum of an SG in presence of a magnetic field. There has also been some
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work on the electronic properties of a non-branching Koch fractal based on a real space
decimation method in which the scaling properties of the spectrum and the quantum states
have been discussed [9]. From these studies the electronic wave functions appear, in
general, to be localized, exponentially, or otherwise. Localization of wave functions on a
fractal lattice is not unexpected, because of the absence of translational order. However,
it should be mentioned here that the absence of translational invariance is not necessarily
an obstacle in getting extended electron states in a system. Such situations arise in the
cases of one-dimensional random, as well as quasiperiodic, systems, as has been reported
recently [10–12]. In all the above cases, the positional correlation between a particular
set of atomic sites has been shown to be responsible for the existence of extended states
via a resonant tunnelling mechanism, or otherwise [12]. In fractal lattices however, such
positional correlations are, in general, absent. Hence, the possibility that these lattices can
support extended electronic states does not seem obvious. Therefore, we find it rather
interesting to investigate such a possibility, and also to find the energy eigenvalues at
which the lattice will support extended electron states, if they exist. We find an additional
motivation from a recent result [13], where it has been shown analytically that a semi-
infinite Vicsek fractal can support an infinite number of extended eigenstates if onetunes
the atom at one edge properly.

In this paper we deal with the well known Sierpinski gasket fractal. Our work is
divided into two parts. First, we do an RSRG study of the fractal by analysing the
recursion relations of the Hamiltonian parameters. Working within a tight-binding formalism
we show that the fractal lattice indeed supports an infinity of extended electronic states.
Analysing the recursion relations of the Hamiltonian parameters we explicitly calculate
the energy eigenvalues responsible for these extended electronic eigenstates. We also
discuss which eigenvalues are to be ‘discarded’ as far as the extended states are concerned.
Secondly, we calculate the end-to-end transmittance of finite SG lattices of arbitrarily large
generations connected between two ordered leads at the two vertices. By using the transfer
matrix method (TMM) [14] we show that, at all the energies for which the infinite SG
lattice supports extended states, the finite versions may have any value of the transmission
coefficient between zero and one if we assign a suitably chosen value of the site energy to
the ‘border’ atoms. The transmission coefficient, for a given set of parameters, turns out
to be invariant even if we increase the system size indefinitely. This non-zero fixed value
of the transmission coefficient can be taken as a tool to characterize the different extended
wave functions for the fractal system.

We start by describing an infinite SG lattice by the usual tight-binding Hamiltonian in
the Wannier representation for non-interacting electrons:

H =
∑

n

εn|n〉〈n| +
∑
〈nm〉

tnm|n〉〈m| (1)

where εn is the on-site potential at thenth atomic site andtnm is the nearest-neighbour
hopping integral, which in our case are taken to be equal toε andt respectively everywhere.
In figure 1(a) we show a part of the infinite lattice. To examine the eigenvalues and
eigenfunctions we have to solve a set of difference equations,viz.

(E − ε)ψn = t (ψi + ψj + ψk + ψl) (2)

for all lattice points denoted byn. i, j , k and l are the four nearest neighbours of thenth
site. We now renormalize the system by eliminating a subset of the above equations in
terms of the rest. A part of the renormalized lattice consisting of the undecimated sites is
shown in figure 1(b). A set of recursion relations forε and t is then obtained, and is given
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Figure 1. (a) Part of an infinite Sierpinski gasket and (b) its renormalized version.

by

εn+1 = εn + 4t2
n(E − εn)/Dn (3)

tn+1 = t2
n(E − εn + 2tn)/Dn. (4)

Here, Dn = (E − εn)(E − εn − tn) − 2t2
n . The subscriptn refers to thenth stage of

renormalization. At this point is should be mentioned that, in a recent paper, Wang [15] has
reported the existence of extended electronic eigenstates on an SG lattice. Our work differs
from that of [15] in the sense that we study here the evolution of the full parameter space
consisting of bothε andt , whereas Wang has started with a special model in whichε is set
equal to zero at the very outset, and has been forced to assume the value zero at all stages
of iteration. Simply be considering the full parameter space comprising bothε and t , we
derive results that differ from those obtained in [15]. Artificially contracting the dimension
of the parameter space from two to one not only excludes energy eigenvalues that really
belong to the extended states, but can lead even toerroneousconclusions regarding their
nature, as we will see. We now proceed to describe our way of looking at the problem.

It is interesting to see from the recursion relations that if, at any stage of renormalization
n, the electron energyE happens to be equal to the site energyεn at that stage, then
we immediately getεn+1 = εn and tn+2 = −tn+1 = tn for all subsequent stages of
renormalization. This implies that the hopping integral reaches a two-cycle fixed-point
under renormalization for this particular value of the energy, i.e.E = εn. If this fixed point
of t turns out to be different from zero then looking at the fractal lattice at any stage of
RSRG we find non-zero overlap of wave functions between nearest-neighbouring sites at
that length scale. This conclusively proves that we have anextendedeigenstate for the
energy concerned. For example, to start with, if we select a model with the initial value
of the site energyε = 0 and t = 1, then we find that forE = 0 the site energy reaches
its fixed-point value (equal to zero) for all subsequent iterations. Under this condition we
additionally gett1 = −t = −1 and t2 = t = 1 after the first two RSRG steps, and this
goes on indefinitely. We thus have an extended electron state atE = 0 for the above
model. The distribution of the amplitudes of the wave function forE = 0 is shown in
figure 2(a). It is to be noted that we have not forcedt beforehand to assume a non-trivial
fixed-point value, but it naturally flows into a two-cycle loop once the energy is selected to
be equal to the on-site potential. This idea helps us in extracting other energy values for
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which one can have extended states for the same model. If, for example, we demand the
equalityE = ε1 after one-step renormalization, we find it leads to a polynomial equation in
E. Solving this equation we come across values ofE among which the ‘allowed’ values
(for extended states) will be those for which the hopping integral from the second stage of
iteration, i.e. fromt2 onwards, will flow naturally in a two-cycle loop with a non-zero value.
We obtainE = 0 andE = 3 by solving the equationE = ε1 with ε = 0 andt = 1. This
particular result is in total disagreement with that in [15] whereE = 0 andE = 3 have
been erroneously declared to correspond to ‘critical’ states showing a power-law decay.

Figure 2. (a) Amplitudes of an extended wavefunction forE = 0 with ε = 0 and t = 1;
(b) variation of the transmittivity as a function of the site energy of a border atom. Here,E = 0,
ε = 0 andt = 1.

We now try to generalize the situation and discuss the conditions that have to be fulfilled
in order that an energy calculated from the polynomial equationE − εn = 0 gives an
eigenvalue corresponding to an extended state. From the recursion relations (3) and (4) it is
very simple to show that, ifE = εn at anynth stage of iteration, then we have an equation

(E − εn−1)(E − εn−1 + 2tn−1)(3tn−1 − E + εn−1) = 0. (5)

That is, we now have to extractE from three different polynomial equations given by

E = εn−1 − 2tn−1 (6)

E = εn−1 (7)

E = εn−1 + 3tn−1. (8)

Now for all energy values that are obtained as solutions of equation (6) it can be easily
checked from (4) that the hopping integraltn in the next stage of renormalization and,
consequently, at all subsequent stages flows to zero. Therefore, one cannot expect extended
eigenstates to exist for these values of the energy. Solutions arising out of equation (6) are
thereforedisallowed as far as the extended eigenstates are concerned. On the other hand,
solutions obtained from equation (8) keeptn non-zero and oscillating in a two-cycle loop. It
is easy to show that for these energy valuestn = 1.25tn−1. If tn is non-zero, thentn−1 also
must be non-zero. In this way the recursion relation (4) connectingtn andtn−1 can be made
to work in the reverse direction to show that the hopping integrals at all the previous steps
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should remain non-zero forE = εn−1+3tn−1. Other allowed values of the energy will result
from the equationE = εn−1, as has already been discussed. We find it rather interesting
that at each stage of renormalization the energy values corresponding to the extended states
come in a typically paired manner, such that the sum of the allowed roots occurring in such
a pair will always be 2ε + 3t . Thus, in the model whereε = 0 and t = 1, the energy
eigenvalues corresponding to extended eigenstates are found to beE = (0, 3) from the
first stage of renormalization,E = (0, 3), and (−0.791 287 847 477 92, 3.791 287 474 7792)
from the second level (i.e. as solutions of the equationE = ε2) and so on. The sum of
the pairs in the brackets is clearly seen to be three (which is equal to 2ε + 3t , with ε = 0
and t = 1) in all cases. This result has been checked to be true for solutions obtained from
higher-order equations as well. It is therefore tempting to put this relationship between the
roots of the equationE − εn = 0 in the form of acondition which must be satisfied by
values ofE obtained from the above equation in order that they correspond to the extended
eigenstates for the gasket. The spurious solutions of the relevant polynomial equations can
thus be eliminated. As the RSRG operation can proceed indefinitely, its quite clear that
one can have an infinite number of extended electronic eigenstates in a infinite SG fractal
lattice.

Having analysed the case of an infinite fractal, we now turn our attention to a finite
SG lattice. In particular, we focus on the possibility of having a non-zero end-to-end
transmission of a wave packet incident on a finite SG fractal or arbitrarily large size through
a pair of leads connected to the two vertices at the base of the triangle enclosing the entire
structure. The site energies of the boundary atom will affect the transmission. In what
follows, we, instead of making a scan over the entire spectrum of eigenvalues (known to be
a Cantor set [7]), choose only those energies which have been shown in this article to give
rise to extended electronic eigenstates for the infinite fractal. By doing this we can make
a classification between the different extended wave functions based on their transmission
properties. We assign a site energyεB to each of the three boundary sites. Then aftern-step
renormalization, a lattice comprising of 3+ 3(3n − 1)/2 sites (including the three outermost
atoms) can be transformed into a cluster of three sites which formed the boundary of the
original lattice, but now with modified site energies and the nearest-neighbour hopping
integral. From this three-site cluster we generate a pair of sites each with a site energy
ε̃B = εB(n) + t2

n/[E − εB(n)], and an effective hopping integral connecting the above pair,
viz., t̃ = tn + t2

n/[E − εB(n)]. The value of the site energy of the border atom at any stage
n is given byεB(n), and is related to its value at an earlier stage by the equation

εB(n) = εB(n − 1) + 2t2
n−1(E − εn−1)/[(E − εn−1)(E − εn−1 − tn−1) − 2t2

n−1]. (9)

It is immediately seen that, wheneverE is chosen to be equal toεn−1, εB also flows to the
fixed point, i.e.εB(n) = εB(n − 1) for all subsequent values ofn.

An ordered lead of identical atoms of site energyε0 (set equal to zero) and hopping
integral t0 is attached to the two border atoms of the SG at the two ends. The problem
now reduces to that of studying the transmission through a ‘dimer impurity’ placed in an
otherwise periodic infinite chain. The transfer matrixM [14] across the pair of impurity
sites then has the matrix elements

M11 = (E − ε̃B)2/t0t̃ − t̃/t0 (10)

M12 = −(E − ε̃B)/t̃ (11)

M21 = −M12 (12)

M22 = −t0/t̃ . (13)
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It is now easy to see that if there exists an energyE that simultaneously makes̃t = t0
and E = ε̃B , then at this particular energy the ‘defect’ transfer matrix will offer identity
contribution (with a negative sign) and one should have full end-to-end transmission across
the entire lattice. To explicitly see whether such a possibility exists, we consider the model
in which ε = 0 andt = 1. At E = 0 the infinite lattice has already been shown to possess
an extended eigenstate in this model. Let us now work with a finite-sized gasket at an even
generation, say, 2n. Then with the above choice ofE, it immediately turns out thatε2n − ε,
εB(2n) = εB , and t2n = t . It is now quite straightforward to calculate the transmittivityT

as a function of the site energyεB of the border atom. The result is

T (εB) = 4/[4(εB + 1)2 + ((εB − 1)(εB + 2) − εB/(εB − 1))2]. (14)

A plot of T (εB) againstεB is shown in Figure 2(b). It is readily seen that by tuning the
value of εB one can get, forE = 0, all possible values of the transmittivity ranging from
zero to one.T in the above equation turns out to be unity if we choose, in this model,
εB = −1.769 29. With this set of the Hamiltonian parameters one can seek the value of the
transmission coefficient for all the energies corresponding to the extended electronic states.
T is no longer unity for these other energy values (different fromE = 0), but remains
invariant with increasing system size. The constant value ofT depends on whether we are
calculating it for an ‘even’- or an ‘odd’-numbered generation. The invariance ofT becomes
apparent when one realizes that for all such extended state eigenvalues the site energiesε

andεB , and the nearest-neighbour hopping integralt , get locked in their fixed-point values,
thereby rendering the transfer matrix elementsMij scale invariant. However, the generation
after which the scale invariance ofT sets in, depends on the choice of the RSRG iteration
numbern for which we setE = εn. Thus, with E = 0, ε = 0 and t = 1 with εB

arbitrarily chosen,T will be a constant from the very first stage of the renormalization
process, whereas, forE = 3, say, the invariance ofT sets in from the second stage, and
so on. The fact thatT becomes independent of the system sizeN is to be contrasted,
for example, with the 1D quasiperiodic copper mean chain where the matrixM across a
‘dimer’ [11] becomes identity for all energies corresponding to the extended states, making
the quasiperiodic chain at those energies equivalent to a perfectly ordered chain of atoms,
or with the case of a loop-less Vicsek fractal where one finds a power-law decay forT even
for extended electronic states in the thermodynamic limit [16].

In conclusion, we have been able to evaluate eigenvalues for a set of extended electronic
states in an infinite Sierpinski gasket. The transmission coefficient for arbitrarily large finite
gaskets show the novel feature of being invariant with increasing system size.
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